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ABSTRACT: The Bermuda Atlantic Time-series Study site provided an opportunity to study bac-
terial community assembly processes at 2 different depths, the surface and 200 m, in the upper
mesopelagic, just below the euphotic zone. Over 100 monthly bacterioplankton DNA samples,
from each depth, were analyzed using 16S rRNA gene sequences parsed with the custom software
package PhyloAssigner. Co-occurrence networks, filtered for potential autocorrelation artifacts,
were constructed for each depth. Network characteristics for the 2 depths were remarkably simi-
lar, and network parameters, such as connectance, were in the same range as previously pub-
lished for ecological networks. Spectral clustering applied to similarity matrices based on exact
connections revealed clusters of nodal taxonomic units (NTUs) that peaked at similar times, sup-
porting deterministic, niche-based assembly. An algorithm that used hierarchical Dirichlet pro-
cesses (HDPs) to model neutral communities based on learned parameters indicated that commu-
nity assembly processes fit niche-based models at the metacommunity level for both depths.
However, HDP analyses restricted to SAR11, SAR86, or SAR202 NTUs supported the neutral
assembly hypothesis, suggesting that neutral process models may apply within some phylogenetic
domains. To understand whether phylogenetically related taxa can substitute for one another in
networks, we created a new metric, phylogenetically weighted connectivity, which considered the
similarity of connections among near phylogenetic neighbors. This analysis suggested that phylo-
genetically similar lineages share similar network connections. Overall, our findings show that
niche-based community assembly models are the best fit at both depths but that the neutral model
may apply at some phylogenetic scales.

KEY WORDS: Community assembly - Network analysis - Marine bacterioplankton - Bermuda
Atlantic Time-series Study
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INTRODUCTION

Samples from the Bermuda Atlantic Time-series
Study (BATS) site in the Sargasso Sea provide an ideal
opportunity to study bacterial community assembly
processes. Monthly microbial samples have been col-
lected for over a decade, yielding a rich dataset cov-
ering the upper 300 m of the water column (Stein-
berg et al. 2001, Lomas et al. 2013). The Sargasso Sea
is extremely oligotrophic and is characterized by
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annual deep mixing events in late winter and early
spring that extend frequently to 200 m. Summer waters
are stably stratified as the surface layers warm. Sam-
pling effort was most complete for surface and 200 m
depths, making comparisons of major environmental
drivers such as temperature, photic exposure, and
annual mixing possible.

High throughput pyrosequencing was used to
deeply probe 16S rRNA genes from over 384 samples
from a 9 yr time series collected at the BATS site
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(Vergin et al. 2013b). These sequences were aligned
and binned with a custom pipeline, PhyloAssigner,
that uses pplacer (Matsen et al. 2010) to assign
sequences to nodes of a reference phylogenetic tree
(Vergin et al. 2013b). These assignments, which we
call nodal taxonomic units (NTUs), accomplish 2
goals: (1) they uniquely identify binned sequences by
the reference sequence, and (2) they are embedded
in a framework that allows quantification of the
phylogenetic relationship between units. A previous
study showed that phylogenetically grouped se-
quences in the SAR11 clade had characteristic eco-
logical distributions and could be defined as ecotypes
(Vergin et al. 2013b).

Networking analyses of this BATS dataset could
reveal ecological processes. Other researchers have
pioneered the use of association and co-occurrence
networks to discover potential relationships within
bacterial communities (Langfelder & Horvath 2008,
Steele et al. 2011, Xia et al. 2011, Faust et al. 2012).
This approach has revealed and confirmed many
ecological processes such as top-down control of bac-
terial communities (Chow et al. 2014), nitrogen fixa-
tion in corals (Rodriguez-Lanetty et al. 2013), and
community succession in a salt marsh (Dini-Andreote
et al. 2014). Cluster analyses of microbial networks,
as has been applied in yeast gene metabolic net-
works (Said et al. 2004), may reveal additional
insights.

The ultimate goal of this project was to address
community assembly processes in the 1991-2004
BATS dataset. Hubbell's unified neutral theory of
biodiversity and biogeography (Hubbell 2001) pro-
vides a useful model for neutral processes. According
to this theory, individuals are equal with respect to
demographic rates of birth and death. At the opposite
end of the conceptual spectrum is niche assembly
theory, in which the community is determined by
niches (the position or status of an organism within its
community and ecosystem resulting from the organ-
ism's structural adaptations, physiological responses,
and specific behavior [Odum 1953]) that filter species
adapted to current sets of environmental parameters
(Keddy 1992). More recent studies suggest that com-
munity assembly is not limited to the dichotomy of
these 2 models but more likely falls within a contin-
uum between these extremes (Gravel et al. 2006,
Wennekes et al. 2012). A recent study developed a
machine-learning algorithm to estimate parameters
for the neutral model and compare the likelihood of
the observed species abundance distributions with
modeled communities at both the local and meta-
community level (Harris et al. 2017).

In this study, we used a time series dataset to test
the hypothesis of neutral pelagic bacterial commu-
nity assembly processes at BATS. We compared char-
acteristics from networks constructed for both the
surface and 200 m samples and probed for deeper
relationships within the networks by applying clus-
tering analyses. We also applied new machine-
learning algorithms to the sequence abundance data
to directly assess the degree of neutral community
assembly at each depth. The comparison of the 2
depths enables us to contrast surface samples subject
to the longer-duration annual disturbance with 200 m
samples subject to shorter-duration disturbances of
the deep mixing event (Lomas et al. 2013), providing
a unique opportunity to study factors that drive com-
munity assembly processes for bacterioplankton.

MATERIALS AND METHODS

Sample collection, nucleic acid isolation,
PCR amplification, pyrosequencing procedures,
and pyrosequencing data processing

Details for sample collection and processing were
described previously (Vergin et al. 2013a). Briefly, in
this study, 454 pyrosequencing data amplified from
the V1 and V2 regions of the 16S rRNA gene from
209 monthly samples at the BATS site (approximately
9 yr of samples) were used to construct surface (106
samples) and 200 m networks (103 samples; Table S1
in the Supplement at www.int-res.com/articles/suppl/
a079p165_supp.pdf). Additional depth profile sam-
ples from the entire dataset (384 total samples) were
used for some analyses (Vergin et al. 2013a). For the
entire dataset, means of 6684 sequences with a mean
of 257 bp length were generated. PhyloAssigner, a
custom-designed Perl pipeline (Vergin et al. 2013b)
which incorporates the phylogenetic placement algo-
rithm pplacer (Matsen et al. 2010), grouped sequences
into well-defined phylogenetic groups, and a com-
prehensive backbone phylogenetic tree (http://aforge.
awi.de/gf/project/phyloassigner) was used to sort the
sequence data into NTUs. NTUs are therefore similar
to more familiar operational taxonomic units (OTUs),
except that NTUs are defined phylogenetically by
reference sequences and clade structure rather than
by cutoff thresholds. Although OTU binning using
cutoff thresholds is computationally expedient, it has
been demonstrated that phylogenetic placement
using this method results in a loss of fine-scale phylo-
genetic information that can be important for resolv-
ing ecotypes (Koeppel & Wu 2013, Vergin et al.
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2013b). NTUs were classified by phylum (or class in
the case of Proteobacteria) and clade (SAR11, SAR86,
SAR116, SAR202, SAR276, SAR324, SAR406, plas-
tids, and Roseobacter) based on their position in the
reference phylogenetic tree.

Calculating networks from Spearman and
Pearson correlations

Amplicon sequence abundance was normalized for
each sample. These percentages were then applied
to the total cell count for each sample to obtain a rel-
ative abundance less biased by differences in cell
counts. Because of other well-known biases, these
abundances are not treated as proxies for cell counts
but are still relative abundances. Samples with miss-
ing cell counts were estimated from the means of all
samples from the same depth and month (relative to
the month of deepest mixing). Time series of relative
abundance for pairs of NTUs were compared using
Spearman and Pearson correlations, as implemented
in local similarity analysis (LSA) (Ruan et al. 2006),
with the significance level adjusted for multiple test-
ing using the Benjamini-Hochberg correction (all
algorithms were written for R [R Core Team 2013]
and are available at https://github.com/kevinvergin).
Both positive and negative correlations were detec-
ted, but time lags were not considered due to the
high number of gaps in the time series data.

Network pruning using diagnostic filtering to
remove potentially spurious correlations

Potentially significant correlations were filtered in
3 steps. First, linear regression analysis was used to
test for a non-zero slope of the linear model compar-
ing the relative abundances of the 2 NTUs (F-statistic
p-value < 0.05). Second, since seasonality was a
strong component in the data, samples were season-
ally differenced, linear regressions were re-modeled,
and residuals were examined using autocorrelation
functions to detect non-normal distributions. Since
seasonal differencing is sensitive to gaps in the time
series, the >100 samples were trimmed to 6 com-
plete years, and partial years were removed (Table S1
in the Supplement). Data for missing months (sur-
face: September 1993, August 1998, and October—
November 1998; 200 m: December 1992-January
1993, September 1993, October—November 1998, July
2000, and July 2002) were extrapolated by averaging
through the 1 mo prior and 1 mo after the missing

sample(s). Simulations demonstrate that non-normality
in the residuals of only 1 NTU does not affect the type
I error rate (see Supplementary methods section in
the Supplement), so the full time series was used for
subsequent analyses. Finally, assumptions about the
residuals in the linear regression analysis (indepen-
dence and normal distribution) were examined using
the autocorrelation function to detect non-random,
sinusoidal patterns indicative of seasonality. Initially,
the residuals for potential linear correlations were
tested and scored for non-normality. A diagnostic test
for correlations strongly influenced by seasonality
was not readily apparent, so we conservatively elim-
inated correlations with high potential for a spuri-
ous relationship by eliminating correlations between
NTUs with strong seasonal signals. Ninety-five per-
cent of the NTUs had no or a few non-random auto-
correlation function results, so correlations between
NTUs in the top 5 % of total non-random autocorrela-
tion functions were eliminated to yield the final
screened matrix of correlations, hereafter referred to
as connections.

Calculating phylogenetically weighted connectivity

A new similarity coefficient, called phylogeneti-
cally weighted connectivity (PWC, d), was developed
to calculate similarities for all pairwise comparisons
of NTUs (e.g. NTU A and NTU B) based on their
shared connections to other NTUs. Since Phylo-
Assigner provides evolutionary distances between
NTUs, a weighting system was developed that con-
sidered near phylogenetic neighbors in the calcu-
lation of this similarity metric. For example, in the
comparison of NTU A to NTU B, sliding windows
considered the 5 nearest phylogenetic neighbors of
all NTUs connected to A and B, in both directions
within the tree. To facilitate this, profiles consisting of
all connected NTUs plus or minus 5 nodes from the
NTU being profiled were constructed for all NTUs.
Each connected node in the profile was then scored
as plus or minus 1, depending on the sign of the cor-
relation, and then neighboring NTUs were weighted
inversely to phylogenetic distance from the con-
nected NTU. Thus, we created a metric of the similar-
ity between the connections of any 2 nodes, taking
into account the network relationships of nodes
closely related to the nodes being compared. This
weighting is different from the strength-of-correla-
tion weighting used by others (Langfelder & Horvath
2008). Primer 6.0 software (Clarke & Gorley 2006)
was then used to construct a non-metric multidimen-
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sional scaling plot and to conduct permutational mul-
tivariate analysis of variance (PERMANOVA) after
categorizing by phylogeny.

Spectral clustering

A kernel K-means approach was implemented in
the R package specc to define clusters of NTUs in a
similarity matrix. Similarities between NTUs based
on direct connections to other NTUs were again cal-
culated, except that phylogenetic relatedness was
not considered, since a more direct similarity meas-
ure was desired. The number of clusters, K, was esti-
mated using the pamk function in the R package fpc
and the default asw criterion. A K-value of 7 was
used for both the surface and 200 m networks. Three
different kernel functions (linear, Gaussian, and
polynomial) were applied to the matrix to identify
clusters. Analyses for each kernel were repeated
100 times with 90 % of the data points for a bootstrap-
like confirmation of cluster assignment. Combined
results for all kernels and replicates were used to
generate a new similarity matrix where NTU assign-
ments on a pairwise basis were calculated as the per-
centage of instances where both NTUs were present
in a given replicate analysis and assigned to the same
cluster. Final, new clusters, consisting of lists of NTUs
assigned to the same bootstrap analysis cluster a
majority of times, were then generated.

Unified neutral theory of biodiversity
ecological parameters

The unified neutral theory of biodiversity (Hubbell
2001) uses 3 parameters to characterize sample pop-
ulation distributions: (1) theta, a dimensionless fun-
damental biodiversity constant that measures specia-
tion—drift in the metacommunity; (2) I, a fundamental
immigration number that measures migration—-drift
in the local community; and (3) m, the migration rate.
These parameters were estimated using the untb
package in R (Hankin 2007). Cell counts at BATS
vary within an order of magnitude, but there is a sys-
tematic bias towards greater numbers at the surface.
Therefore, theta was not assumed to be uniform and,
consequently, the Ggr method in the untb package
was used to estimate m and I values. Relationships
between these estimates, as well as temperature and
cell counts, for each sample were graphed in contour
plots using Ocean Data View software (Schlitzer
2014).

Individual samples (local communities) from both
the surface and 200 m and separately combined sur-
face and 200 m samples (metacommunity) were
assessed for fit to a neutral model using published
software (Harris et al. 2017). The parameters for the
neutral assembly model were estimated from the
data by modeling the data as a hierarchical Dirichlet
process (HDP, Harris et al. 2017). A Gibbs sampler, a
type of Bayesian Markov chain Monte Carlo algo-
rithm, then generated samples from the posterior dis-
tribution of the parameters given the data. Thus, the
likelihood of the data was compared against a distri-
bution of likelihoods from an artificial data matrix
generated using the learned parameters. Data were
trimmed to exclude NTUs with zero abundance at
the depth under consideration (1031 and 960 NTUs
for the surface and 200 m, respectively). Surface and
200 m datasets parsed to include only the SAR11
clade (surface), SAR202 clade (200 m), and SAR86
clade (both surface and 200 m) were also analyzed.

RESULTS

Correlation networks were generated for 2 depths,
the surface and 200 m, from monthly samples col-
lected at the BATS site over a discontinuous 9 yr time
span. An algorithm based on LSA (Ruan et al. 2006)
detected 45980 and 43 153 putative significant corre-
lations for the surface and 200 m networks, respec-
tively (Table 1). Three diagnostic algorithms were
subsequently applied to the networks to reduce the
likelihood of type I errors (reject the null hypothesis
of no significant correlation when the null hypothesis
is true). The first diagnostic algorithm tested for a
non-zero slope in the relationship between the rela-
tive abundances of each pair of NTUs. The second

Table 1. Number of significant correlations at each step of
diagnostic testing and final network characteristics. ACF:
autocorrelation function

Surface 200 m
Network correlations
Spearman and Pearson 45980 43153
Linear regression slope 40435 39762
Seasonal differencing check 35749 38150
Dual ACF check 35571 38150
Network characteristics
Connectance 0.029 0.031
Average path length 2.55 2.55
Average edge betweenness 47.2 43.2
Clustering coefficient 0.51 0.50
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diagnostic algorithm applied seasonal differencing to
the time series and eliminated correlations with
underlying non-normality in the linear regression
residuals. The final diagnostic algorithm eliminated
potentially spurious correlations due to underlying
non-normality of linear regression residuals in non-
differenced data. After these diagnostics were used
to remove correlations that were identified as poten-
tial type I errors, the networks had 35571 and 38 150
correlations for the surface and 200 m networks,
respectively. Correlations that passed these diagnos-
tic tests are referred to as connections throughout.

Network characteristics were remarkably similar
for the 2 networks and comparable to many other
reported microbial and food web networks (Dunne
et al. 2002, Steele et al. 2011, Barberan et al. 2012;
Table 1). The small connectance values and short
average path lengths indicate small-world character-
istics for these networks. A cumulative distribution of
node connectivity had a complex shape but could be
approximated by a truncated power law function. As
was the case for the other characteristics, coefficients
for the power law function were similar for the 2 net-
works (a = 0.087 and 0.063, b = 0.026 and 0.026 for
the surface and 200 m, respectively; Fig. S1 in the
Supplement at www.int-res.com/articles/suppl/a079
p165_supp.pdf).

The NTUs with the greatest number of connections
for each network were identified (Table S2 in the
Supplement). Interestingly, nearly all of these NTUs,
for both networks, are in the class Gammaproteobac-
teria, many of which belong to the SAR86 clade, a
ubiquitous and diverse phylogenetic group of uncul-
tivated marine bacteria. These NTUs are commonly
present throughout the time series and were classi-
fied as Frequent Abundant in a previous analysis
(Vergin et al. 2013a; Fig. S2 in the Supplement).

PWC, described in ‘Materials and methods', revealed
that phylogenetically similar NTUs tend to have sim-
ilar connections to other NTUs. PWC matrices were
constructed for the networks, NTUs were sorted into
phylogenetic categories (phylum/class or family),
and PERMANOVAs were used to test the hypothesis
that variance within a phylogenetic category was not
significantly different from a random expectation.
Within the PWC matrix, pairwise comparisons of
phylogenetic categories showed that NTUs within a
phylogenetic category were grouped more closely
together than randomly assigned NTUs in most cases
(Table S3 in the Supplement).

It was reasoned that 2 NTUs from a co-occurring
community should have more similar connections to
other NTUs in the same community than 2 NTUs

from different communities. Thus, these co-occurring
communities should be revealed as clusters in a sim-
ilarity matrix of direct NTU connections. As opposed
to the PWC similarity measure, phylogenetic rela-
tionships are not used as weights when determining
similarities of connections in this analysis. Spectral
cluster assignments were determined using 3 differ-
ent kernel functions and 100 bootstrap-like replicates
for each of the functions, resulting in 35 and 50 clus-
ters for the surface and 200 m networks, respectively.
Distributions of the NTUs in each cluster revealed
that members of a cluster tended to have peak rela-
tive sequence abundances at the same time(s) during
the time series (Fig. 1).

Neutral community parameters were estimated
from relative abundance data for the entire dataset
(384 samples) using the untb package in R (Hankin
2007). In addition, surface and 200 m depth strata
were each tested for neutral community assembly
processes using a published algorithm (Harris et al.
2017). For the entire dataset, the migration rate pa-
rameter, m, increased in surface waters during winter
months corresponding to the deep mixing period and
was much lower in the summer months when the wa-
ter column was stratified (Fig. 2A). At 200 m, m varied
less throughout the year. The fundamental dispersal
number, I, followed a similar pattern (Fig. 2B), with
higher values at the surface during deep mixing and
lower values in surface stratified waters. There was
strong evidence for non-neutral assembly processes
for both surface and 200 m metacommunities (pseudo-
p =0, test to reject neutral assembly) and marginal ev-
idence for non-neutral assembly processes for surface
local samples (pseudo-p = 0.038). However, 200 m lo-
cal samples were consistent with a model of neutral
assembly processes (pseudo-p = 0.996). When subsets
of the data consisting of a single phylogenetic clade at
a specific depth were considered (surface SAR11,
200 m SAR202, surface SAR86, and 200 m SARS86),
neutral assembly processes were supported at both
the metacommunity and local levels in all cases
(pseudo-p > 0.70).

DISCUSSION

We chose to modify an existing algorithm, LSA
(Ruan et al. 2006), to study time series data from
BATS. The modified approach we took retained the
Spearman and Pearson correlations from LSA but fil-
tered out potentially spurious correlations by linear
modeling and examination of residuals from linear
regressions for non-normal behavior. Since time
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Fig. 1. Relative abundance plots for 8 representative nodal taxonomic units (NTUs) in each of 4 spectral clusters for the (A-D)

surface network and (E-H) 200 m network. Relative abundance of amplicon sequences (y-axis) for individual NTUs over the

entire concatenated time series (x-axis) is shown. The first months for each calendar year are marked on the x-axis. Colored

bars to the right of the plot indicate the phylum, or class in the case of Proteobacteria, of the NTU as detailed in the legend.

NTU numbers and expanded phylogenetic designations are available in Table S4 in the Supplement at www.int-res.com/

articles/suppl/a079p165_supp.pdf. Faded red lines for each cluster indicate periods during which a majority of NTUs within
the cluster had relatively greater abundances, suggesting a coordinated response to environmental conditions
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Fig. 2. Contour plots for (A) migration rate, m; (B) fundamen-
tal dispersal number, I; (C) cell count; and (D) temperature
for all time series samples plotted as an average over a 1 yr
time span. The plots are indexed to the month of deepest
mixing (DM) for each year, designated as month 1 (x-axis).
Sample depth is indicated on the y-axis. The white line rep-
resents the average mixed layer depth, and bars indicate
standard deviations. Heat map scales are indicated to the
right of the plot

series data are not independent (abundance tends to
be related to the previous and subsequent time points),
we examined the autocorrelation functions of the
residuals to detect non-normal patterns. As a result of

the diagnostic steps, 17.3% of all correlations were
eliminated. Non-normality in the residuals of linear
regression analyses is most likely due to seasonality
in the time series data, so it is interesting to note that
fewer correlations were eliminated from the 200 m
network (1612) than the surface network (4864),
where seasonality drives community turnover (Gilbert
et al. 2012, Giovannoni & Vergin 2012). The networks
that emerged had small-world characteristics very
similar to those observed previously by other investi-
gators using different construction methods (Dunne
et al. 2004, Steele et al. 2011).

Phylogenetic community ecology attempts to model
evolutionary processes resulting from the selection
pressures of ecological processes. This idea has been
applied to other networks and has demonstrated that
phylogenetically similar species interact with the
same set of species and/or occupy similar positions in
the network (Mouquet et al. 2012 and references
therein). We sought to apply similar analyses to this
bacterial network, so we implemented a new metric,
PWC, to examine the relationship between phyloge-
netic relatedness, which was readily available from
PhyloAssigner, and the connections of NTUs. PWC
measures the similarity of 2 taxa in terms of shared
connections within the network, but it takes into
account not just the connected taxa being compared
but also their nearest phylogenetic neighbors. By
comparing the PWC values for NTU pairs, we rea-
soned that we could find sets of NTUs with similar
roles in the community. The PWC analysis supported
the role of ecological drift, a neutral process, in com-
munity assembly by showing that phylogenetically
related taxa tend to form similar connections. The
similarity of connections increased (PWC values
were higher) with decreasing phylogenetic distance.
We interpreted this evidence as support for the eco-
logical drift hypothesis because it shows that related
taxa tend to have similar network relationships,
implying that they are interchangeable in communi-
ties (Table S3 in the Supplement). Interestingly, some
of the most highly connected taxa were closely re-
lated phylogenetically, suggesting the possibility of
drift among keystone taxa (Steele et al. 2011, Eiler et
al. 2012).

A subsequent clustering analysis provided evi-
dence for deterministic, niche-based community as-
sembly. A second similarity matrix based on NTU
connection similarities was generated but this time
considered exact matches only and no phylogenetic
weighting, thus creating a more finely resolved ana-
lysis of relationships between taxa. We hypothesized
that connection similarities would be higher among



Author copy

172 Aquat Microb Ecol 79: 165-175, 2017

members of a co-occurring community and that these
higher similarities would be revealed as clusters in a
similarity matrix. Therefore, spectral clustering uti-
lizing 3 different kernel functions was applied to the
similarity matrix to define clusters. For increased
confidence, a bootstrap-like analysis was repeated
100 times, and NTUs were assigned to clusters based
on their shared cluster assignments with other NTUs.
The clusters (35 for the surface network and 50 for
the 200 m network) tended to share NTUs that peaked
in relative sequence abundances at the same times,
meaning that NTUs tended to co-occur, sometimes at
multiple time points in the time series. This result
suggests that NTUs were assembled into a commu-
nity deterministically when they favorably responded,
presumably to the same set of biotic and/or abiotic
conditions present at a given time. Similar to previ-
ous studies of this dataset (Vergin et al. 2013a,b), no
significant correlations with physical or chemical fac-
tors routinely measured at BATS were found, sug-
gesting that interactions with environmental factors
are subtle and may be missed by current sampling
methods.

We modeled community assembly processes at
BATS using methods developed to test Hubbell's uni-
fied neutral theory of biodiversity (Hubbell 2001),
which seeks to understand whether neutral or niche-
based processes dominate assembly. The PWC ana-
lyses provided support for the ecological drift model,
a prediction from Hubbell's neutral theory, by show-
ing that phylogenetically related taxa share similar
connections and can presumably substitute for each
other in ecological networks. Hubbell theorized that
local communities form stochastically from a meta-
community. In his model, population size remains
constant, as all resources are used by the individuals
in the local community. As individuals die, there is an
equal chance that any individual will reproduce or a
variable chance that a member of the metacommu-
nity will migrate to replace the expired individual,
thus maintaining a constant population. The bacteri-
oplankton community at BATS, in principle, can
provide a good test of the neutral model because bac-
terial populations fluctuate over a small range, espe-
cially within depth strata, thus meeting the model's
assumption of constant population size (Fig. 2C). In
this analysis, the entire time series at each depth is
interpreted as a metacommunity with temporal and
spatial dimensions, while the individual sample
points are interpreted as the local communities.
Comparing the data to neutral models, we found no
support for the neutral assembly hypothesis at the
metacommunity level, for either the surface or 200 m

datasets. But for local communities, at the surface,
neutral assembly was rejected at the p = 0.01 level
but not at the p = 0.05 level, indicating marginal sup-
port for non-neutral assembly. However, the evi-
dence was strong for neutral assembly processes in
local communities at 200 m.

The difference in local but not metacommunity
assembly processes between the surface and 200 m
can be explained by the annual deep mixing event
in the BATS system. The migration rate parameter,
m (Fig. 2A), and fundamental dispersal number, I
(Fig. 2B), for the full dataset, including depth profile
samples (Vergin et al. 2013b), show a change in dis-
persal during the deep mixing period in the late win-
ter/early spring. Barriers to dispersal are probably
reduced during deep mixing due to evenly distrib-
uted water temperatures (Fig. 2D) and physical mix-
ing from storm systems. By summer, water tempera-
tures at the surface increase, resulting in a stable,
stratified water column that likely increases barriers
to dispersal, resulting in a lower-diversity community
at the surface. This observation is consistent with an
analysis we reported previously that suggested that
transport resulting from disturbances created oppor-
tunities for growth and immigration of rare taxa (Ver-
gin et al. 2013a). The seasonal fluctuation between
cold, nutrient-rich, mixed waters and warm, nutrient-
depleted, stratified waters likely drives habitat filter-
ing that limits the dispersal of individuals from the
surface metacommunity. An analogous example of
dispersal limitation was described in an unconfined
aquifer system (Stegen et al. 2013). BATS deep mix-
ing sometimes extends to 200 m, where there is a
demonstrable, but weak, seasonality (Morris et al.
2005, Vergin et al. 2013a). Thus, the fit of the 200 m
data to a local community neutral model is likely
related to weaker physical forces driving changes in
community structure (Hellweger et al. 2014).

Neutral community assembly was supported by
modeling within broad phylogenetic catagories, such
as the SAR11, SAR86, and SAR202 clades. When the
surface and 200 m data were filtered to include clades
of NTUs, there was strong evidence for neutral com-
munity assembly, despite the influence of deep mix-
ing. This result is similar to human gut microbiome
community assembly for intra-taxon groups (Harris
et al. 2017) and ammonia-oxidizing bacteria in waste-
water treatment microbial communities (Ofiteru et al.
2010). The results presented here are consistent with
other studies of natural systems (Manrique & Jones
2017) and suggest that models supporting ecological
drift may be a common feature for lower taxonomic
groups.
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One striking difference between these sites is the
extent of the annual deep mixing event, which
impacts the surface much more strongly than the
deeper 200 m layer. This mixing, along with differing
light and temperature effects, creates a larger gradi-
ent of abiotic conditions, thus filtering different micro-
bial groups at different times of the year. The en-
largement of niche space by seasonality and mixing
likely drives the modeling of the system away from
the null hypothesis of neutral assembly. The upper
mesopelagic (200 m) is a less variable environment
than the surface, both in chemical and physical con-
ditions and in the phylogenetic composition of the
microbial community (Morris et al. 2005), but none-
theless the impact of environmental filtering was evi-
dent in the fit of the data to niche-based models.
Spectral clustering supported the results from HDP
models that suggest that niche-based processes dom-
inate community turnover at both the surface and
200 m. However, we observed that in the more sta-
ble 200 m environment, the data fit a neutral model
at the local community level, while at the meta-
community level, deterministic, niche-based pro-
cesses were a better fit. The appearance of neutrality
may be influenced by the frequency of events, such
that community members that respond to conditions
that are duplicated infrequently may appear to follow
neutral models in shorter time series. A study of a
wastewater treatment system showed strong niche-
based assembly processes indicated by synchronized
community changes in 3 replicate anaerobic diges-
tors (Vanwonterghem et al. 2014). Eukaryotic micro-
bial communities in managed vineyards also showed
strong evidence for niche-based assembly pro-
cesses (Morrison-Whittle 2015). These results sug-
gest that niche-based assembly patterns may emerge
in duplicated environments or in time series experi-
ments that are long enough to display repeated
conditions.

CONCLUSIONS

The long-term BATS data and the application of
PhyloAssigner provided us with opportunities to
explore microbial community networks from a new
perspective. Overall, microbial community networks
at BATS have small-world characteristics that are
surprisingly like those that have been described in
other microbial plankton systems. We found that
both at the surface and at 200 m, these communities
appeared to be mainly driven by niche-based assem-
bly processes.

Hubbell's unified neutral theory of biodiversity
(Hubbell 2001) provides a context for evaluating the
relative contributions of habitat filtering and neutral
processes to community assembly. Using tools that
were developed to assess the fit of data to the neu-
tral theory, we found that metacommunities at both
depths follow niche assembly processes, while
upper mesopelagic local communities appear to fol-
low neutral assembly processes. A major difference
between the surface and mesopelagic is the impact
and duration of mixing—a physical process that
transports cells and brings nutrients to the surface.
The alternating transition from a disturbed, mixed
state to a stable, stratified state may create diver-
gent niches that filter potential migrants. Even in
the mesopelagic, where mixing is less pronounced,
disrupted conditions may allow habitat filtering to
influence metacommunity composition but not
enough to disrupt fit to a neutral assembly model at
local community levels. The analyses also suggest
that within some clades, such as SAR11, the neutral
model may apply.

We used phylogenetic distances from Phylo-
Assigner to show that within the networks, phylo-
genetically related taxa share similar connections.
This implies that, at least in some domains of the
phylogenetic tree that we used to parse the data,
there is functional redundancy from a network per-
spective in the data we analyzed. PhyloAssigner,
which does not parse sequences with uniform simi-
larity cutoffs, assesses 16S rRNA diversity at rela-
tively fine scales. Exploring the exact phylogenetic
scales at which network characteristics transition
from fitting niche-based assembly may be an avenue
for understanding the relationships between niche-
driven and neutral processes in determining micro-
bial diversity. The potential importance of neutral
processes in community assembly was illustrated by
the recent demonstration (Hellweger et al. 2014) that
bacterioplankton biogeography can be impacted by
neutral drift.

In summary, we found that the 2 pelagic microbial
environments, the surface and upper mesopelagic,
harbor networks that are very similar in many net-
work characteristics and in both niche-based com-
munity assembly processes dominated over neutral
processes. However, we also found evidence for neu-
tral processes operating within some large microbial
plankton clades and at the local level in the upper
mesopelagic. We attribute the difference between
the surface and upper mesopelagic to the effects of
seasonal forcing, which impose greater environmen-
tal influence at the surface.
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